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Abstract
Aspect based sentiment analysis (ABSA) aims
to identify the sentiment polarity towards
the given aspect in a sentence, while pre-
vious models typically exploit an aspect-
independent (weakly associative) encoder for
sentence representation generation. In this pa-
per, we propose a novel Aspect-Guided Deep
Transition model, named AGDT, which uti-
lizes the given aspect to guide the sentence
encoding from scratch with the specially-
designed deep transition architecture. Fur-
thermore, an aspect-oriented objective is de-
signed to enforce AGDT to reconstruct the
given aspect with the generated sentence rep-
resentation. In doing so, our AGDT can ac-
curately generate aspect-specific sentence rep-
resentation, and thus conduct more accurate
sentiment predictions. Experimental results on
multiple SemEval datasets demonstrate the ef-
fectiveness of our proposed approach, which
significantly outperforms the best reported re-
sults with the same setting.1

1 Introduction

Aspect based sentiment analysis (ABSA) is a fine-
grained task in sentiment analysis, which can pro-
vide important sentiment information for other
natural language processing (NLP) tasks. There
are two different subtasks in ABSA, namely,
aspect-category sentiment analysis and aspect-
term sentiment analysis (Pontiki et al., 2014; Xue
and Li, 2018). Aspect-category sentiment analy-
sis aims at predicting the sentiment polarity to-
wards the given aspect, which is in predefined sev-
eral categories and it may not appear in the sen-
tence. For instance, in Table 1, the aspect-category
sentiment analysis is going to predict the senti-
ment polarity towards the aspect “food”, which

⇤ Work was done when Yunlong Liang was an intern at
Pattern Recognition Center, WeChat AI, Tencent Inc, China.

† Jinan Xu is the corresponding author.
1The code is publicly available at: https://github.

com/XL2248/AGDT

Sentence The appetizers are ok,
but the service is slow.

Aspect-Category food service
Aspect-Term The appetizers service

Sentiment Polarity Neutral Negative

Table 1: The instance contains different sentiment po-
larities towards two aspects.

is not appeared in the sentence. By contrast, the
goal of aspect-term sentiment analysis is to predict
the sentiment polarity over the aspect term which
is a subsequence of the sentence. For instance,
the aspect-term sentiment analysis will predict the
sentiment polarity towards the aspect term “The

appetizers”, which is a subsequence of the sen-
tence. Additionally, the number of categories of
the aspect term is more than one thousand in the
training corpus.

As shown in Table 1, sentiment polarity may
be different when different aspects are consid-
ered. Thus, the given aspect (term) is crucial to
ABSA tasks (Jiang et al., 2011; Ma et al., 2017;
Wang et al., 2018; Xing et al., 2019; Liang et al.,
2019). Besides, Li et al. (2018a) show that not
all words of a sentence are useful for the senti-
ment prediction towards a given aspect (term). For
instance, when the given aspect is the “service”,
the words “appetizers” and “ok” are irrelevant for
the sentiment prediction. Therefore, an aspect-
independent (weakly associative) encoder may en-
code such background words (e.g., “appetizers”
and “ok”) into the final representation, which may
lead to an incorrect prediction.

Numerous existing models (Tang et al., 2016b;
Tay et al., 2017; Fan et al., 2018; Xue and Li,
2018) typically utilize an aspect-independent en-
coder to generate the sentence representation, and
then apply the attention mechanism (Luong et al.,
2015) or gating mechanism to conduct feature
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selection and extraction, while feature selection
and extraction may base on noised representa-
tions. In addition, some models (Tang et al.,
2016a; Wang et al., 2016; Majumder et al., 2018)
simply concatenate the aspect embedding with
each word embedding of the sentence, and then
leverage conventional Long Short-Term Memories
(LSTMs) (Hochreiter and Schmidhuber, 1997) to
generate the sentence representation. However, it
is insufficient to exploit the given aspect and con-
duct potentially complex feature selection and ex-
traction.

To address this issue, we investigate a novel
architecture to enhance the capability of feature
selection and extraction with the guidance of the
given aspect from scratch. Based on the deep tran-
sition Gated Recurrent Unit (GRU) (Cho et al.,
2014; Pascanu et al., 2014; Miceli Barone et al.,
2017; Meng and Zhang, 2019), an aspect-guided
GRU encoder is thus proposed, which utilizes the
given aspect to guide the sentence encoding pro-
cedure at the very beginning stage. In partic-
ular, we specially design an aspect-gate for the
deep transition GRU to control the information
flow of each token input, with the aim of guid-
ing feature selection and extraction from scratch,
i.e. sentence representation generation. Further-
more, we design an aspect-oriented objective to
enforce our model to reconstruct the given aspect,
with the sentence representation generated by the
aspect-guided encoder. We name this Aspect-
Guided Deep Transition model as AGDT. With
all the above contributions, our AGDT can accu-
rately generate an aspect-specific representation
for a sentence, and thus conduct more accurate
sentiment predictions towards the given aspect.

We evaluate the AGDT on multiple datasets
of two subtasks in ABSA. Experimental results
demonstrate the effectiveness of our proposed ap-
proach. And the AGDT significantly surpasses ex-
isting models with the same setting and achieves
state-of-the-art performance among the models
without using additional features (e.g., BERT (De-
vlin et al., 2018)). Moreover, we also provide em-
pirical and visualization analysis to reveal the ad-
vantages of our model. Our contributions can be
summarized as follows:

• We propose an aspect-guided encoder, which
utilizes the given aspect to guide the encod-
ing of a sentence from scratch, in order to
conduct the aspect-specific feature selection

and extraction at the very beginning stage.

• We propose an aspect-reconstruction ap-
proach to further guarantee that the aspect-
specific information has been fully embedded
into the sentence representation.

• Our AGDT substantially outperforms pre-
vious systems with the same setting, and
achieves state-of-the-art results on bench-
mark datasets compared to those models
without leveraging additional features (e.g.,
BERT).

2 Model Description
As shown in Figure 1, the AGDT model mainly
consists of three parts: aspect-guided encoder,
aspect-reconstruction and aspect concatenated

embedding. The aspect-guided encoder is spe-
cially designed to guide the encoding of a sentence
from scratch for conducting the aspect-specific
feature selection and extraction at the very be-
ginning stage. The aspect-reconstruction aims to
guarantee that the aspect-specific information has
been fully embedded in the sentence representa-
tion for more accurate predictions. The aspect
concatenated embedding part is used to concate-
nate the aspect embedding and the generated sen-
tence representation so as to make the final predic-
tion.

2.1 Aspect-Guided Encoder
The aspect-guided encoder is the core module of
AGDT, which consists of two key components:
Aspect-guided GRU and Transition GRU (Cho
et al., 2014).

A-GRU: Aspect-guided GRU (A-GRU) is a
specially-designed unit for the ABSA tasks, which
is an extension of the L-GRU proposed by Meng
and Zhang (2019). In particular, we design an
aspect-gate to select aspect-specific representa-
tions through controlling the transformation scale
of token embeddings at each time step.

At time step t, the hidden state ht is computed
as follows:

ht = (1� zt)� ht�1 + zt � eht (1)

where � represents element-wise product; zt is
the update gate (Cho et al., 2014); and eht is the
candidate activation, which is computed as:
eht = tanh(gt � (Wxhxt) + rt � (Whhht�1))

+ lt � H1(xt) + gt � H2(xt) (2)
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Figure 1: The overview of AGDT. The bottom right dark node (above the aspect embedding) is the aspect gate
and other dark nodes (⌦) means element-wise multiply for the input token and the aspect gate. The aspect-guided

encoder consists of a L-GRU (the circle frames fused with a small circle on above) at the bottom followed by
several T-GRUs (the circle frames) from bottom to up.

where gt denotes the aspect-gate; xt represents the
input word embedding at time step t; rt is the re-
set gate (Cho et al., 2014); H1(xt) and H2(xt) are
the linear transformation of the input xt, and lt is
the linear transformation gate for xt (Meng and
Zhang, 2019). rt, zt, lt, gt, H1(xt) and H2(xt)
are computed as:

rt = �(Wxrxt +Whrht�1) (3)
zt = �(Wxzxt +Whzht�1) (4)
lt = �(Wxlxt +Whlht�1) (5)
gt = relu(Waa+Whght�1) (6)
H1(xt) = W1xt (7)
H2(xt) = W2xt (8)

where “a” denotes the embedding of the given as-
pect, which is the same at each time step. The up-
date gate zt and reset gate rt are the same as them
in the conventional GRU.

In Eq. (2) ⇠ (8), the aspect-gate gt controls
both nonlinear and linear transformations of the
input xt under the guidance of the given aspect
at each time step. Besides, we also exploit a linear
transformation gate lt to control the linear trans-
formation of the input, according to the current in-
put xt and previous hidden state ht�1, which has
been proved powerful in the deep transition archi-
tecture (Meng and Zhang, 2019).

As a consequence, A-GRU can control both

non-linear transformation and linear transforma-
tion for input xt at each time step, with the guid-
ance of the given aspect, i.e., A-GRU can guide
the encoding of aspect-specific features and block
the aspect-irrelevant information at the very begin-
ning stage.

T-GRU: Transition GRU (T-GRU) (Pascanu
et al., 2014) is a crucial component of deep tran-
sition block, which is a special case of GRU with
only “state” as an input, namely its input embed-
ding is zero embedding. As in Figure 1, a deep
transition block consists of an A-GRU followed by
several T-GRUs at each time step. For the current
time step t, the output of one A-GRU/T-GRU is
fed into the next T-GRU as the input. The output
of the last T-GRU at time step t is fed into A-GRU
at the time step t + 1. For a T-GRU, each hidden
state at both time step t and transition depth i is
computed as:

hi
t = (1� zit)� hi�1

t + zit � ehi
t (9)

ehi
t = tanh(rit � (Wi

hh
i�1
t )) (10)

where the update gate zit and the reset gate rit are
computed as:

zit = �(Wi
zh

i�1
t ) (11)

rit = �(Wi
rh

i�1
t ) (12)

The AGDT encoder is based on deep transition
cells, where each cell is composed of one A-GRU
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at the bottom, followed by several T-GRUs. Such
AGDT model can encode the sentence represen-
tation with the guidance of aspect information by
utilizing the specially designed architecture.

2.2 Aspect-Reconstruction

We propose an aspect-reconstruction approach to
guarantee the aspect-specific information has been
fully embedded in the sentence representation.
Particularly, we devise two objectives for two sub-
tasks in ABSA respectively. In terms of aspect-
category sentiment analysis datasets, there are
only several predefined aspect categories. While
in aspect-term sentiment analysis datasets, the
number of categories of term is more than one
thousand. In a real-life scenario, the number of
term is infinite, while the words that make up
terms are limited. Thus we design different loss-
functions for these two scenarios.

For the aspect-category sentiment analysis task,
we aim to reconstruct the aspect according to the
aspect-specific representation. It is a multi-class
problem. We take the softmax cross-entropy as
the loss function:

Lc = min(�
C1X

i=0

yci log(p
c
i )) (13)

where C1 is the number of predefined aspects in
the training example; yci is the ground-truth and pci
is the estimated probability of a aspect.

For the aspect-term sentiment analysis task, we
intend to reconstruct the aspect term (may consist
of multiple words) according to the aspect-specific
representation. It is a multi-label problem and thus
the sigmoid cross-entropy is applied:

Lt = min{�
C2X

i=0

[yti log(p
t
i)

+ (1� yti) log(1� pti)]}

(14)

where C2 denotes the number of words that con-
stitute all terms in the training example, yti is the
ground-truth and pti represents the predicted value
of a word.

Our aspect-oriented objective consists of Lc and
Lt, which guarantee that the aspect-specific infor-
mation has been fully embedded into the sentence
representation.

2.3 Training Objective
The final loss function is as follows:

J = min(�
CX

i=0

yi log(pi) + �L) (15)

where the underlined part denotes the conven-
tional loss function; C is the number of sentiment
labels; yi is the ground-truth and pi represents
the estimated probability of the sentiment label;
L is the aspect-oriented objective, where Eq. 13
is for the aspect-category sentiment analysis task
and Eq. 14 is for the aspect-term sentiment analy-
sis task. And � is the weight of L.

As shown in Figure 1, we employ the aspect
reconstruction approach to reconstruct the aspect
(term), where “softmax” is for the aspect-category
sentiment analysis task and “sigmoid” is for the
aspect-term sentiment analysis task. Addition-
ally, we concatenate the aspect embedding on the
aspect-guided sentence representation to predict
the sentiment polarity. Under that loss function
(Eq. 15), the AGDT can produce aspect-specific
sentence representations.

3 Experiments

3.1 Datasets and Metrics
Data Preparation. We conduct experiments on
two datasets of the aspect-category based task and
two datasets of the aspect-term based task. For
these four datasets, we name the full dataset as
“DS”. In each “DS”, there are some sentences
like the example in Table 1, containing different
sentiment labels, each of which associates with
an aspect (term). For instance, Table 1 shows the
customer’s different attitude towards two aspects:
“food” (“The appetizers”) and “service”. In order
to measure whether a model can detect different
sentiment polarities in one sentence towards dif-
ferent aspects, we extract a hard dataset from each
“DS”, named “HDS”, in which each sentence only
has different sentiment labels associated with dif-
ferent aspects. When processing the original sen-
tence s that has multiple aspects a1, a2, ..., an and
corresponding sentiment labels l1, l2, ..., ln (n is
the number of aspects or terms in a sentence), the
sentence will be expanded into (s, a1, l1), (s, a2,
l2), ..., (s, an, ln) in each dataset (Ruder et al.,
2016b,a; Xue and Li, 2018), i.e, there will be n
duplicated sentences associated with different as-
pects and labels.
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Positive Negative Neutral Conflict Total
DS HDS DS HDS DS HDS DS HDS DS HDS

Restaurant-14 Train 2,179 139 839 136 500 50 195 40 3,713 365
Test 657 32 222 26 94 12 52 19 1,025 89

Restaurant-Large Train 2,710 182 1,198 178 757 107 - - 4,665 467
Test 1,505 92 680 81 241 61 - - 2,426 234

Table 2: Statistics of datasets for the aspect-category sentiment analysis task.

Positive Negative Neutral Conflict Total NC
DS HDS DS HDS DS HDS DS HDS DS HDS DS

Restaurant Train 2,164 379 805 323 633 293 91 43 3,693 1,038 3,602
Test 728 92 196 62 196 83 14 8 1,134 245 1,120

Laptop Train 987 159 866 147 460 173 45 17 2,358 496 2,313
Test 341 31 128 25 169 49 16 3 654 108 638

Table 3: Statistics of datasets for the aspect-term sentiment analysis task. The ‘NC’ indicates No “Conflict” label,
which is just removed the “conflict” label and is prepared for the three-class experiment.

Aspect-Category Sentiment Analysis. For
comparison, we follow Xue and Li (2018) and use
the restaurant reviews dataset of SemEval 2014
(“restaurant-14”) Task 4 (Pontiki et al., 2014) to
evaluate our AGDT model. The dataset contains
five predefined aspects and four sentiment labels.
A large dataset (“restaurant-large”) involves
restaurant reviews of three years, i.e., 2014 ⇠
2016 (Pontiki et al., 2014). There are eight
predefined aspects and three labels in that dataset.
When creating the “restaurant-large” dataset,
we follow the same procedure as in Xue and Li
(2018). Statistics of datasets are shown in Table 2.

Aspect-Term Sentiment Analysis. We use the
restaurant and laptop review datasets of SemEval
2014 Task 4 (Pontiki et al., 2014) to evaluate
our model. Both datasets contain four sentiment
labels. Meanwhile, we also conduct a three-
class experiment, in order to compare with some
work (Wang et al., 2016; Ma et al., 2017; Li et al.,
2018a) which removed “conflict” labels. Statistics
of both datasets are shown in Table 3.

Metrics. The evaluation metrics are accuracy.
All instances are shown in Table 2 and Table 3.
Each experiment is repeated five times. The mean
and the standard deviation are reported.

3.2 Implementation Details
We use the pre-trained 300d Glove2 embeddings
(Pennington et al., 2014) to initialize word em-

2Pre-trained Glove embeddings can be obtained from
http://nlp.stanford.edu/projects/glove/

beddings, which is fixed in all models. For
out-of-vocabulary words, we randomly sample
their embeddings by the uniform distribution
U(�0.25, 0.25). Following Tang et al. (2016b);
Chen et al. (2017); Liu and Zhang (2017), we take
the averaged word embedding as the aspect repre-
sentation for multi-word aspect terms. The transi-
tion depth of deep transition model is 4 (see Sec-
tion 3.4). The hidden size is set to 300. We set
the dropout rate (Srivastava et al., 2014) to 0.5
for input token embeddings and 0.3 for hidden
states. All models are optimized using Adam op-
timizer (Kingma and Ba, 2014) with gradient clip-
ping equals to 5 (Pascanu et al., 2012). The ini-
tial learning rate is set to 0.01 and the batch size
is set to 4096 at the token level. The weight of
the reconstruction loss � in Eq. 15 is fine-tuned
(see Section 3.4) and respectively set to 0.4, 0.4,
0.2 and 0.5 for four datasets. The neural model
is implemented in Tensorflow (Abadi et al., 2016)
and all computations are done on a NVIDIA Tesla
M40 GPU.

3.3 Baselines
To comprehensively evaluate our AGDT, we com-
pare the AGDT with several competitive models.

ATAE-LSTM. It is an attention-based LSTM
model. It appends the given aspect embedding
with each word embedding, and then the concate-
nated embedding is taken as the input of LSTM.
The output of LSTM is appended aspect embed-
ding again. Furthermore, attention is applied to
extract features for final predictions.
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Models Restaurant-14 Restaurant-Large
DS HDS DS HDS

ATAE-LSTM(Wang et al., 2016)* 78.29±0.68 45.62±0.90 83.91±0.49 66.32±2.28
CNN(Kim, 2014)* 79.47±0.32 44.94±0.01 84.28±0.15 50.43±0.38
GCAE(Xue and Li, 2018)* 79.35±0.34 50.55±1.83 85.92±0.27 70.75±1.19
AGDT 81.78±0.31 62.02±1.31 87.55±0.17 75.73±0.50

Table 4: The accuracy of the aspect-category sentiment analysis task. ‘*’ refers to citing from GCAE (Xue and Li,
2018).

Models Restaurant Laptop
DS HDS DS HDS

TD-LSTM(Tang et al., 2016a)* 73.44±1.17 56.48±2.46 62.23±0.92 46.11±1.89
ATAE-LSTM(Wang et al., 2016)* 73.74±3.01 50.98±2.27 64.38±4.52 40.39±1.30
IAN(Ma et al., 2017)* 76.34±0.27 55.16±1.97 68.49±0.57 44.51±0.48
RAM(Chen et al., 2017)* 76.97±0.64 55.85±1.60 68.48±0.85 45.37±2.03
GCAE(Xue and Li, 2018)* 77.28±0.32 56.73±0.56 69.14±0.32 47.06±2.45
AGDT 78.85±0.45 60.33±1.01 71.50±0.85 51.30±1.26

Table 5: The accuracy of the aspect-term sentiment analysis task. ‘*’ refers to citing from GCAE (Xue and Li,
2018).

CNN. This model focuses on extracting n-gram
features to generate sentence representation for the
sentiment classification.

TD-LSTM. This model uses two LSTMs to
capture the left and right context of the term to
generate target-dependent representations for the
sentiment prediction.

IAN. This model employs two LSTMs and in-
teractive attention mechanism to learn representa-
tions of the sentence and the aspect, and concate-
nates them for the sentiment prediction.

RAM. This model applies multiple attentions
and memory networks to produce the sentence
representation.

GCAE. It uses CNNs to extract features and
then employs two Gated Tanh-Relu units to se-
lectively output the sentiment information flow to-
wards the aspect for predicting sentiment labels.

3.4 Main Results and Analysis
Aspect-Category Sentiment Analysis Task
We present the overall performance of our model
and baseline models in Table 4. Results show
that our AGDT outperforms all baseline mod-
els on both “restaurant-14” and “restaurant-large”
datasets. ATAE-LSTM employs an aspect-weakly
associative encoder to generate the aspect-specific
sentence representation by simply concatenating
the aspect, which is insufficient to exploit the
given aspect. Although GCAE incorporates the

gating mechanism to control the sentiment in-
formation flow according to the given aspect,
the information flow is generated by an aspect-
independent encoder. Compared with GCAE, our
AGDT improves the performance by 2.4% and
1.6% in the “DS” part of the two dataset, re-
spectively. These results demonstrate that our
AGDT can sufficiently exploit the given aspect
to generate the aspect-guided sentence representa-
tion, and thus conduct accurate sentiment predic-
tion. Our model benefits from the following as-
pects. First, our AGDT utilizes an aspect-guided
encoder, which leverages the given aspect to guide
the sentence encoding from scratch and gener-
ates the aspect-guided representation. Second, the
AGDT guarantees that the aspect-specific infor-
mation has been fully embedded in the sentence
representation via reconstructing the given aspect.
Third, the given aspect embedding is concatenated
on the aspect-guided sentence representation for
final predictions.

The “HDS”, which is designed to measure
whether a model can detect different sentiment po-
larities in a sentence, consists of replicated sen-
tences with different sentiments towards multiple
aspects. Our AGDT surpasses GCAE by a very
large margin (+11.4% and +4.9% respectively)
on both datasets. This indicates that the given
aspect information is very pivotal to the accurate
sentiment prediction, especially when the sentence
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has different sentiment labels, which is consistent
with existing work (Jiang et al., 2011; Ma et al.,
2017; Wang et al., 2018). Those results demon-
strate the effectiveness of our model and suggest
that our AGDT has better ability to distinguish the
different sentiments of multiple aspects compared
to GCAE.

Aspect-Term Sentiment Analysis Task
As shown in Table 5, our AGDT consistently
outperforms all compared methods on both do-
mains. In this task, TD-LSTM and ATAE-LSTM
use a aspect-weakly associative encoder. IAN,
RAM and GCAE employ an aspect-independent
encoder. In the “DS” part, our AGDT model
surpasses all baseline models, which shows
that the inclusion of A-GRU (aspect-guided en-
coder), aspect-reconstruction and aspect concate-
nated embedding has an overall positive impact on
the classification process.

In the “HDS” part, the AGDT model obtains
+3.6% higher accuracy than GCAE on the restau-
rant domain and +4.2% higher accuracy on the
laptop domain, which shows that our AGDT
has stronger ability for the multi-sentiment prob-
lem against GCAE. These results further demon-
strate that our model works well across tasks and
datasets.

Ablation Study
We conduct ablation experiments to investigate the
impacts of each part in AGDT, where the GRU is
stacked with 4 layers. Here “AC” represents as-
pect concatenated embedding , “AG” stands for A-
GRU (Eq. (1) ⇠ (8)) and “AR” denotes the aspect-
reconstruction (Eq. (13) ⇠ (15)).

From Table 6 and Table 7, we can conclude:
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1). Deep Transition (DT) achieves superior per-
formances than GRU, which is consistent with

AC AG AR Rest-14 Rest-Large
DS HDS DS HDS

GRU
p

⇥ ⇥ 80.90 53.93 86.75 68.46 1�

DT

p
⇥ ⇥ 81.74 56.63 87.54 72.39 2�p p

⇥ 81.88 60.42 87.72 74.81 3�
⇥

p
⇥ 81.95 59.33 87.68 74.44 4�

⇥
p p

81.83 61.35 87.34 75.56 5�p p p
81.78 62.02 87.55 75.73 6�

Table 6: Ablation study of the AGDT on the aspect-
category sentiment analysis task. Here “AC”, “AG”
and “AR” represent aspect concatenated embedding,
A-GRU and aspect-reconstruction, respectively, ‘

p
’

and ‘⇥’ denotes whether to apply the operation. ‘Rest-
14’: Restaurant-14,‘Rest-Large’: Restaurant-Large.

AC AG AR Restaurant Laptop
DS HDS DS HDS

GRU
p

⇥ ⇥ 78.31 55.92 70.21 46.48 1�

DT

p
⇥ ⇥ 78.36 56.24 71.07 47.59 2�p p

⇥ 78.77 60.14 71.42 50.83 3�
⇥

p
⇥ 78.55 60.08 71.38 50.74 4�

⇥
p p

78.59 60.16 71.47 51.11 5�p p p
78.85 60.33 71.50 51.30 6�

Table 7: Ablation study of the AGDT on the aspect-
term sentiment analysis task.

previous work (Miceli Barone et al., 2017;
Meng and Zhang, 2019) ( 2� vs. 1�).

2). Utilizing “AG” to guide encoding aspect-
related features from scratch has a significant
impact for highly competitive results and par-
ticularly in the “HDS” part, which demon-
strates that it has the stronger ability to identify
different sentiment polarities towards different
aspects. ( 3� vs. 2�).

3). Aspect concatenated embedding can promote
the accuracy to a degree ( 4� vs. 3�).

4). The aspect-reconstruction approach (“AR”)
substantially improves the performance, espe-
cially in the “HDS” part ( 5� vs. 4�).

5). the results in 6� show that all modules have an
overall positive impact on the sentiment clas-
sification.

Impact of Model Depth
We have demonstrated the effectiveness of the
AGDT. Here, we investigate the impact of model
depth of AGDT, varying the depth from 1 to 6.
Table 8 shows the change of accuracy on the test
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Depth 1 2 3 4 5 6

D1
DS 81.12 81.45 81.52 81.78 81.07 80.68

HDS 55.73 57.08 60.67 62.02 59.10 58.65

D2
DS 87.20 87.47 87.53 87.55 87.11 87.21

HDS 73.93 74.27 76.07 75.73 75.56 74.27

D3
DS 78.18 77.94 78.69 78.85 78.40 77.88

HDS 59.35 58.94 59.43 60.33 59.27 57.80

D4
DS 71.13 71.10 71.62 71.50 71.16 70.86

HDS 49.44 50.00 50.56 51.30 49.81 49.63

Table 8: The accuracy of model depth on the four
datasets. ‘D1’: Restaurant-14, ‘D2’: Restaurant-Large,
‘D3’: Restaurant, ‘D4’: Laptop.

Rest-14 Rest-Large Rest. Laptop
DS 99.55 99.80 76.21 70.92

Table 9: The accuracy of aspect reconstruction on the
full test set. ‘Rest-14’: Restaurant-14, ‘Rest-Large’:
Restaurant-Large, ‘Rest.’: Restaurant.

sets as depth increases. We find that the best re-
sults can be obtained when the depth is equal to
4 at most case, and further depth do not provide
considerable performance improvement.

Effectiveness of Aspect-reconstruction
Approach
Here, we investigate how well the AGDT can re-
construct the aspect information. For the aspect-
term reconstruction, we count the construction is
correct when all words of the term are recon-
structed. Table 9 shows all results on four test
datasets, which shows the effectiveness of aspect-
reconstruction approach again.

Impact of Loss Weight �
We randomly sample a temporary development
set from the “HDS” part of the training set to
choose the lambda for each dataset. And we in-
vestigate the impact of � for aspect-oriented ob-
jectives. Specifically, � is increased from 0.1 to
1.0. Figure 2 illustrates all results on four “HDS”
datasets, which show that reconstructing the given
aspect can enhance aspect-specific sentiment fea-
tures and thus obtain better performances.

Comparison on Three-Class for the
Aspect-Term Sentiment Analysis Task
We also conduct a three-class experiment to com-
pare our AGDT with previous models, i.e., IARM,
TNet, VAE, PBAN, AOA and MGAN, in Table 10.

Models Rest. Laptop
IARM(Majumder et al., 2018)* 80.00 73.80
TNet(Li et al., 2018a)* 80.79 76.54
VAE(Xu and Tan, 2018)* 81.10 75.34
PBAN(Gu et al., 2018)* 81.16 74.12
AOA(Huang et al., 2018)* 81.20 74.50
MGAN(Fan et al., 2018)* 81.25 75.39
DAuM(Zhu and Qian, 2018)* 82.32 74.45
AGDT 82.95 75.86

Table 10: The three-class accuracy of the aspect-term
sentiment analysis task on SemEval 2014. ‘*’ refers to
citing from the original paper. ‘Rest.’: Restaurant.

Figure 3: The output of A-GRU.

Figure 4: The above is the output of A-GRU. The bot-
tom is the output after reconstructing the given aspect.

These previous models are based on an aspect-
independent (weakly associative) encoder to gen-
erate sentence representations. Results on all do-
mains suggest that our AGDT substantially out-
performs most competitive models, except for the
TNet on the laptop dataset. The reason may be
TNet incorporates additional features (e.g., posi-
tion features, local ngrams and word-level fea-
tures) compared to ours (only word-level features).

4 Analysis and Discussion

Case Study and Visualization. To give an intu-
itive understanding of how the proposed A-GRU
works from scratch with different aspects, we take
a review sentence as an example. As the exam-
ple “the appetizers are ok, but the service is slow.”
shown in Table 1, it has different sentiment labels
towards different aspects. The color depth denotes
the semantic relatedness level between the given
aspect and each word. More depth means stronger
relation to the given aspect.

Figure 3 shows that the A-GRU can effectively
guide encoding the aspect-related features with
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the given aspect and identify corresponding sen-
timent. In another case, “overpriced Japanese

food with mediocre service.”, there are two ex-
tremely strong sentiment words. As the above
of Figure 4 shows, our A-GRU generates almost
the same weight to the word “overpriced” and
“mediocre”. The bottom of Figure 4 shows that
reconstructing the given aspect can effectively en-
hance aspect-specific sentiment features and pro-
duce correct sentiment predictions.

Error Analysis. We further investigate the er-
rors from AGDT, which can be roughly divided
into 3 types. 1) The decision boundary among
the sentiment polarity is unclear, even the anno-
tators can not sure what sentiment orientation over
the given aspect in the sentence. 2) The “con-
flict/neutral” instances are extremely easily mis-
classified as “positive” or “negative”, due to the
imbalanced label distribution in training corpus3.
3) The polarity of complex instances is hard to
predict, such as the sentence that express subtle
emotions, which are hardly effectively captured,
or containing negation words (e.g., never, less and
not), which easily affect the sentiment polarity.

5 Related Work

Sentiment Analysis. There are kinds of
sentiment analysis tasks, such as document-
level (Thongtan and Phienthrakul, 2019),
sentence-level4 (Zhang and Zhang, 2019; Zhang
et al., 2019), aspect-level (Pontiki et al., 2014;
Wang et al., 2019a) and multimodal (Chen et al.,
2018; Akhtar et al., 2019) sentiment analysis. For
the aspect-level sentiment analysis, previous work
typically apply attention mechanism (Luong et al.,
2015) combining with memory network (Weston
et al., 2014) or gating units to solve this task (Tang
et al., 2016b; He et al., 2018a; Huang and Carley,
2018; Xue and Li, 2018; Duan et al., 2018;
Tang et al., 2019; Yang et al., 2019; Bao et al.,
2019), where an aspect-independent encoder is
used to generate the sentence representation. In
addition, some work leverage the aspect-weakly
associative encoder to generate aspect-specific
sentence representation (Tang et al., 2016a; Wang
et al., 2016; Majumder et al., 2018). All of these
methods make insufficient use of the given aspect
information. There are also some work which

3More details can be seen in the dataset or see here:
http://alt.qcri.org/semeval2014/

4https://nlp.stanford.edu/sentiment/

jointly extract the aspect term (and opinion term)
and predict its sentiment polarity (Schmitt et al.,
2018; Li et al., 2018b; Ma et al., 2018; Angelidis
and Lapata, 2018; He et al., 2019; Luo et al.,
2019; Hu et al., 2019; Dai and Song, 2019; Wang
et al., 2019b). In this paper, we focus on the
latter problem and leave aspect extraction (Shu
et al., 2017) to future work. And some work (Sun
et al., 2019; Xu et al., 2019; He et al., 2018b; Xu
and Tan, 2018; Chen and Qian, 2019; He et al.,
2019) employ the well-known BERT (Devlin
et al., 2018) or document-level corpora to enhance
ABSA tasks, which will be considered in our
future work to further improve the performance.

Deep Transition. Deep transition has been
proved its superiority in language modeling
(Pascanu et al., 2014) and machine translation
(Miceli Barone et al., 2017; Meng and Zhang,
2019). We follow the deep transition architecture
in Meng and Zhang (2019) and extend it by incor-
porating a novel A-GRU for ABSA tasks.

6 Conclusions

In this paper, we propose a novel aspect-guided
encoder (AGDT) for ABSA tasks, based on a deep
transition architecture. Our AGDT can guide the
sentence encoding from scratch for the aspect-
specific feature selection and extraction. Fur-
thermore, we design an aspect-reconstruction ap-
proach to enforce AGDT to reconstruct the given
aspect with the generated sentence representation.
Empirical studies on four datasets suggest that the
AGDT outperforms existing state-of-the-art mod-
els substantially on both aspect-category senti-
ment analysis task and aspect-term sentiment anal-
ysis task of ABSA without additional features.
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