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Abstract
Relation classification is crucial for inferring
semantic relatedness between entities in a
piece of text. These systems can be trained
given labelled data. However, relation classi-
fication is very domain-specific and it takes a
lot of effort to label data for a new domain.
In this paper, we explore domain adaptation
techniques for this task. While past works
have focused on single source domain adap-
tation for bio-medical relation classification,
we classify relations in an unlabeled target do-
main by transferring useful knowledge from
one or more related source domains. Our ex-
periments with the model have shown to im-
prove state-of-the-art F1 score on 3 benchmark
biomedical corpora for single domain and on
2 out of 3 for multi-domain scenarios. When
used with contextualized embeddings, there
is further boost in performance outperforming
neural-network based domain adaptation base-
lines for both the cases.

1 Introduction
In the biomedical domain, a relation can exist
between various entity types like protein-protein,
drug-drug, chemical-protein etc. Detecting re-
lationships is a fundamental sub-task for auto-
matic Information Extraction to overcome ef-
forts of manual inspection, especially for growing
biomedical articles. However, existing supervised
systems are highly data-driven. This poses a chal-
lenge since manual labelling is a costly and time-
consuming process and there is a dearth of labelled
data in the biomedical domain covering all tasks
and for new datasets. A system trained on a spe-
cific dataset1 may perform poorly on another, for
the same task (Mou et al., 2016), due to dataset
variance which can arise owing to sample selec-
tion bias (Rios et al., 2018).

1Note: We use the terms dataset and domain interchange-
ably.

Domain Adaptation aims at adapting a model
trained on a source domain to another target do-
main that may differ in their underlying data dis-
tributions. Past work on domain adaptation for
bio-medical relation classification has focused on
single-source adaptation (Rios et al., 2018). How-
ever, multiple sources from related domains can
prove to be beneficial for classification in a low-
resource scenario.

In this paper, we perform domain adaptation
for biomedical binary relation classification at the
sentence-level. For single-source single target
(SSST) we transfer between different datasets of
protein-protein interaction, along with drug-drug
interaction. We also explore multi-source sin-
gle target (MSST) adaptation to incorporate more
richness in the knowledge transferred by using ad-
ditional smaller corpora for protein-protein rela-
tion and multiple labels for chemical-protein rela-
tion respectively. Given an unlabeled target do-
main, we transfer common useful features from
related labelled source domains using adversar-
ial training (Goodfellow et al., 2014). It helps
to overcome the sampling bias and learn com-
mon indistinguishable features, promoting gener-
alization, using min-max optimization. We adopt
the Multinomial Adversarial Network integrated
with the Shared-Private model (Chen and Cardie,
2018) which was originally proposed for the task
of Multi-Domain Text Classification. It can handle
multiple source domains at a time which is in con-
trast to traditional binomial adversarial networks.
The Shared-Private model (Bousmalis et al., 2016)
consists of a split representation where the private
space learns specific features related to a particular
domain while a shared space learns features com-
mon to all the domains. Such representation pro-
motes non-contamination of the two spaces pre-
serving their uniqueness. The contributions of our
approach are as follows:
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1) We show that using a shared-private model
along with adversarial training improves SSST
adaptation compared to neural network baselines.
When multiple source corpora from similar do-
mains are used it leads to further performance
enhancement. Moreover, use of contextualized
sentential embeddings leads to better performance
than exisitng baseline methods for both MSST and
SSST.

2) We explore the generalizability of our frame-
work using two prominent neural architectures:
CNN (Nguyen and Grishman, 2015) and Bi-
LSTM (Kavuluru et al., 2017), where we find the
former to be more robust across our experiments.

2 Methodology

For every labeled sources and a single unlabeled
target we have set of NER tagged sentences, each
of which is represented as: X = {e1, e2, w1...wn}
where e1 and e2 are two tagged entities and wj is
the jth word in the sentence . A labelled source in-
stance is accompanied by the relation label (True
or False). In this section we discuss the input rep-
resentation followed by model description.

2.1 Input Representation
We form word and position embeddings for ev-
ery word in an NER tagged sentence. We use the
PubMed-and-PMC-w2v2 to generate word em-
beddings. The size being (|V | · dw), where dw is
the word embedding dimension which is 200 and
|V | is the vocabulary size. The position embed-
ding vector for jth word in a sentence relative to
two tagged entities e1 and e2 is represented as a tu-
ple: (pe1(j), pe2(j)) where, pe1(j) and pe2(j) ✏ R

e.

2.2 Model
Fig 1 shows the adaptation of MAN framework
whose various components are discussed below.

Shared & Domain feature extractor (Fs, Fdi)
The input representation is fed to both Fdi and
Fs for labeled source domains whereas for un-
labeled target instances it is fed only to Fs. For
SSST the model is trained on a single labeled
source domain and tested on a unlabeled target do-
main. For MSST we do not combine the sources
as a single corpus since that leads to a number of
false negatives. We make two different assump-
tions to consider multiple sources: 1) Following
Nguyen et al., (2014) we consider multiple labels

2http://evexdb.org/pmresources/vec-space-models/

Figure 1: MAN for Domain Adaptation of Binary Rela-
tion Classification. The figure shows the training flow
given a sentence from a labeled source domain. D is
trained separately than rest of the network

from single corpus as different sources, 2) We use
additional smaller corpora from a similar domain
as multi-source. The Shared Feature space
(Fs) learns domain agnostic representations and
Private Feature space (Fdi) learns domain spe-
cific features for every ith labeled domain. We
apply two different architectures for both Fs and
Fdi to analyze the changes in performance of the
approach for the task : Convolutional neural net-
work (Nguyen and Grishman, 2015) (MAN CNN)
and Bi-LSTM (Kavuluru et al., 2017) (MAN Bi-
LSTM). We have performed detailed experiments
on each of these in Section 5.

Domain discriminator, D is a fully-
connected layer with softmax that pre-
dicts multiple domain probabilities using
Multinomial Adversarial Network. The
output from Fs is fed to D which is adversarially
trained separately from the entire network using
L2 loss described as follows:

LD(d̂, d) =
NX

i=1

(d̂i � 1{d=i})
2

where, d is the index assigned for a domain and d̂
is the prediction. It is generalized as

PN
i=1 d̂i = 1

and 8i : d̂i � 0. Fs tries to fool D so that it
can not correctly guess the domain from where a
sample instance is coming from. Thus Fs learns
indistinguishable features in the process.

Relation Classifier C is a fully-connected layer
with a softmax, used to predict the class prob-
abilities. We use Bio-BERT (Lee et al., 2019)
embeddings for every sentence as features (Geet-
icka Chauhan, 2019) BERT[CLS] that have shown
to improve performance in many downstream
tasks. This is concatenated with the fixed size sen-
tence representation from Fs and Fdi , together

ˊ
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Datasets Entity
Pair

# of
Sent

# of
Positive

# of
Negative

AiMed 1995 1000 4834
BioInfer 1100 2534 7132
LLL PPI 77 164 166
HPRD50 145 163 270
IEPA 486 355 482

Table 1: Protein Protein Interaction Dataset statistics.

Datasets Entity
Pair

# of
Train

# of
Valid

# of
Test

DDI Drug-Drug 27779 - 5713
CPR: 3 768 550 665
CPR: 4 2254 1094 1661
CPR: 5 Chem-Prot 173 116 195
CPR: 6 235 199 293
CPR: 9 727 457 644

Table 2: Drug-Drug Interaction and Chemical-Protein
Dataset statistics.

they serve as input to C. For unlabeled target, dur-
ing test no domain specific features are generated
from Fdi and that part is set to zero vector. For
binary classification we adopt Negative Log Like-
lihood Loss for C described below:

Lc(ŷ, y) = �logP (ŷ = y)

where, y is the true relation label and ŷ is the soft-
max label. The objective of Fdi is same as that of
C and it relies only on labeled data. On the other
hand the objective of the Shared Feature Extractor
Fs is represented as follows:

Loss of Fs = Classifier loss+�Domain loss

It consists of two loss components: improve per-
formance of C and enhance learning of invariant
features across all domains. A hyper parameter �
is used to balance both of them.

3 Datasets

The dataset statistics is summarized in Table 1
and Table 2. A 10-fold cross validation was per-
formed for the Protein-Protein Interaction dataset.
For given set of entities E in a sentence, it is split

into
✓

E
2

◆
instances. All positive instances of

datasets with more than two relation types are
merged and assigned True labels while negative
instances are assigned False labels. Unlabeled
data is formed by removing labels from develop-
ment and test datasets.

4 Experiments

Pre-processing: We anonymize the named enti-
ties in the sentence by replacing them with prede-
fined tags like @PROT1$, @DRUG$ (Bhasuran
and Natarajan, 2018).

4.1 Single source single target (SSST)

A thorough experiment is conducted using all
possible combinations of the three benchmark
data-sets AiMed (Bunescu et al., 2005), BioInfer
(Pyysalo et al., 2006), DDI (Herrero-Zazo et al.,
2013) whose results are discussed in Table 3

4.2 Multi-source single target (MSST)

The experiments with two different assumptions to
consider multiple sources are as follows:

Multiple smaller corpora from similar do-
main: For Protein Protein Interaction there
are three smaller standard corpora in literature,
namely, LLL (Nedellec, 2005), IEPA (Ding et al.,
2001), HPRD50 (Fundel et al., 2007). All three
were considered as additional sources to transfer
knowledge. AiMed (AM) and BioInfer (BI) were
alternately selected as the unlabeled target in 2 dif-
ferent experiments while the remaining 4 denoted
as 4P are considered as source corpus.

Multiple labels from single corpora: For
ChemProt corpora we consider various labels as
different sources following Nguyen et al., (2014)
The five positive labels of ChemProt are: CPR:
3, CPR: 4, CPR: 5, CPR: 6, CPR: 9 which stand
for upregulator, downregulator, agonist, antago-
nist and substrate, respectively. We predict the
classification performance for unlabeled targets
CPR:6 and CPR:9 taking multi-source labeled in-
put denoted as 3C from three sources- CPR: 3,
CPR: 4, CPR: 5 as positive instances and remain-
ing as negative.

4.3 Baselines

We compare our approach with different baselines
which are mentioned as follows:

- BioBERT (Rios et al., 2018): For SSST we
train it on one dataset and test on another. For
MSST we combine the multiple sources as a single
source and test on labeled target.

- CNN+DANN (Lisheng Fu, 2017) : A variant
of adversarial training which is gradient reversal
(RevGrad) is used with CNN (Nguyen and Grish-
man, 2015).
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Method
BioInfer

!
AiMed

AiMed
!

BioInfer
BioInfer

!
DDI

DDI
!

BioInfer
AiMed
!

DDI
DDI
!

AiMed
CNN 45.22 36.72 39.75 22.13 15.83 27.93
Bi-LSTM 46.88 29.59 40.87 17.21 18.58 25.80
BioBERT* 76.48 69.23 67.89 57.84 51.22 54.83
CNN + DANN* 45.98 42.01 41.58 34.37 28.66 28.90
Bi-LSTM + RevGrad 46.41 40.11 39.41 37.20 27.72 35.29
Adv-CNN 48.79 54.13 44.19 48.53 45.96 44.71
Adv - Bi-LSTM 48.51 56.54 44.47 44.90 46.21 43.44
MAN CNN ** 50.23 55.04 47.63 49.51 46.97 42.36
MAN Bi-LSTM ** 49.19 58.69 46.77 46.28 47.84 41.53
MAN CNN + BERT[CLS] ** 53.08 57.89 49.33 50.79 47.01 46.38
MAN Bi-LSTM + BERT[CLS] ** 52.74 61.01 48.03 45.12 50.19 44.01

Table 3: F1 scores for SSST experiment on test set of target (RHS of !) . **: Our model. *: Our implementation.
Bold text: Best domain adaptation model for a dataset.

- Adv Bi-LSTM + Adv CNN (Rios et al.,
2018): Conducts two-step training: pre-training
with source followed by adversarial training with
target. For MSST experiment we compare our
method with Adv CNN and Adv Bi-LSTM by
combining multiple sources.

5 Results and Discussions
In Table 3 we see that BioInfer generalizes well
to AiMed and DDI corpora using vanilla LSTM
or CNN architecture. However, with MAN and
contextual embeddings, we do not see prominent
gains as much as the other datasets. This can be
due to the class imbalance in data (positive to neg-
ative instance ratio 1:5.9) (Hsu et al., 2015; Rios
et al., 2018). For AiMed and BioInfer, we find that
the knowledge transfer among themselves gives
the best performance thus strengthening the fact
that datasets from the same domain can contribute
to performance enhancement justifying the perfor-
mance gains in MSST experiments. Our model
outperforms other baselines just with the use of
adversarial training which might be attributed to
joint learning better representation from shared
and private feature extractors. The use of contex-
tual BERT[CLS] tokens leads to increase in per-
formance scores since they encode important re-
lations between words in a sentence (Vig, 2019;
Hewitt and Manning, 2019).

In Table 4, BioBERT is seen to perform well
for ChemProt. We hypothesize that this may be
due to the same underlying dataset being used dur-
ing train and test. Though we use different la-
bels as multi-source, that may not contribute to
generating enough variance in sources since they

Method
3C
!

CPR:9

3C
!

CPR:6

4P
!

AM

4P
!
BI

BioBERT* 69.27 73.50 43.01 52.98
Adv-CNN* 58.23 56.69 45.30 51.79
Adv-
BiLSTM* 56.30 57.13 42.01 52.67

MAN
CNN** 59.69 58.30 52.33 57.21

MAN
Bi-LSTM** 57.01 59.71 53.64 59.37

MAN CNN
+
BERT
-[CLS]**

64.23 65.41 56.75 64.83

MAN
Bi-LSTM
+
BERT
-[CLS]**

62.07 64.09 57.09 63.92

Table 4: F1 scores for MSST experiment on test set of
target (RHS of !). **: Our model. *: Our implemen-
tation trained with unified labeled multi-source. Bold
text: Best model for a dataset..

were from the same dataset. For AiMed and
BioInfer, however, three different smaller corpora
were used, where the proposed method outper-
forms BioBERT. When compared across all the
six SSST experiments, the Bi-LSTM based model
lacks in performance may be due to absence of any
attention mechanism which would have helped in
selecting more relevant context (Chen and Cardie,
2018). We observe that adversarial training along
with contextualized BERT sentence embeddings
leads to performance gains across all datasets.
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6 Conclusions
Our proposed model significantly outperformed
the existing neural network based domain adapta-
tion baselines for SSST. Among the two MSST ex-
periments, we showed that the system gains when
multiple source corpora are used. We also experi-
ment with two architectures out of which CNN is
seen to perform marginally better compared to Bi-
LSTM. Our analysis on Section 5 further explains
the effect of sources, adversarial training and use
of contextualized BERT sentential embeddings.
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