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Abstract 

Deep neural network models such as long 
short-term memory (LSTM) and tree-
LSTM have been proven to be effective for 
sentiment analysis. However, sequential 
LSTM is a bias model wherein the words in 
the tail of a sentence are more heavily 
emphasized than those in the header for 
building sentence representations. Even 
tree-LSTM, with useful structural 
information, could not avoid the bias 
problem because the root node will be 
dominant and the nodes in the bottom of the 
parse tree will be less emphasized even 
though they may contain salient 
information. To overcome the bias problem, 
this study proposes a capsule tree-LSTM 
model, introducing a dynamic routing 
algorithm as an aggregation layer to build 
sentence representation by assigning 
different weights to nodes according to 
their contributions to prediction. 
Experiments on Stanford Sentiment 
Treebank (SST) for sentiment 
classification and EmoBank for regression 
show that the proposed method improved 
the performance of tree-LSTM and other 
neural network models. In addition, the 
deeper the tree structure, the bigger the 
improvement. 

1 Introduction 

In sentiment analysis, word embeddings (Mikolov 
et al., 2013a; Mikolov et al., 2013b; Pennington et 
al., 2014)  and sentiment embeddings (Tang et al., 
2016; Yu et al., 2018a; Yu et al., 2018b) have 
become a fundamental component to build deep 
neural networks such as convolutional neural 
networks (CNN) (Kalchbrenner et al., 2014; Kim, 
2014), recurrent neural networks (RNN) (Graves, 
2012; Irsoy and Cardie, 2014), gated recurrent unit 

(GRU) (Cho et al., 2014), and long short-term 
memory (LSTM) (Tai et al., 2015; Wang et al., 
2015). Given a variable-length text, one challenge 
of using these neural networks is to compose 
individual word vectors into sentence vectors with 
the same length (Iyyer et al., 2015; Joulin et al., 
2016; Bojanowski et al., 2016). 
    The sequential neural networks such as RNN, 
GRU, and LSTM are commonly used due to their 
ability to capture long-distance dependency in 
sequential texts. However, these methods belong to 
the biased model, where the words in the tail of a 
sentence are more heavily emphasized than those 
in the header for building sentence representations. 
As shown in Fig. 1(a), the priority for each word 
vector will be “fantastic reaall ris rstre 
this”. This prioritization seems satisfactory for this 
sentence, but note that the key components could 
appear anywhere in the sentence rather than 
necessarily at the end. 
    To improve the abovementioned sequential 
models, Tai et al. (2015) and Huang et al. (2017) 
proposed a tree-LSTM model to introduce useful 
structural information from sentence parse trees. 
However, the tree-LSTM also heavily emphasizes 
the root node in the tree to build sentence 
representations. That is, words that are closed to 
the root will be given higher priority than words 
that are far away from the root. As shown in Fig. 
1(b), the priority of word vectors would be “thisr= 
stre r= is eaall r= fantastic”. This example shows 
that the tree-LSTM still could not avoid the bias 
problem because the nodes (e.g., fantastic) that 
contribute more to the prediction but lie in the leaf 
node at the bottom of the parse tree will be less 
emphasized. 

To overcome the bias problem that may arise in 
the tree-LSTM, this study proposes a capsule tree-
LSTM model. In spired by recent promising work 
of capsule network (Sabour et al., 2017), the 
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proposed method introduces a dynamic routing 
algorithm to consider all non-leaf nodes to build 
sentence vectors, instead of using the root alone in 
the tree-LSTM. In addition, different nodes will 
receive different weights according to their 
contributions to the prediction task. Unlike self-
attention (Lin et al., 2017; Yang et al., 2016), which 
applies a fixed policy without considering the state 
of the final sentence vectors, the task of assigning 
weights in the proposed model is considered to be 
a routing issue to iteratively determine how much 
information can be passed from non-leaf nodes in 
the tree to the vector presentation of the sentence, 
according to the state of final output. For example, 
in the aforementioned example text, it would be 
useful for the model to emphasize fantastic that 
contains the most salient information, even when 
the word lies at the bottom of the parser tree. Based 
on the dynamic routing algorithm, the priority of 
the word vector in the proposed model would be 
“fantastic eaall =is this=stre ”. The proposed 
method is evaluated through both sentiment 
classification and regression tasks to determine 
whether dynamic routing can improve the 
performance of the tree-LSTM and other neural 
network models. 

The rest of this paper is organized as follow. 
Section 2 describes the proposed capsule tree-

LSTM model with dynamic routing. Section 3 
summarizes the evaluation results. Conclusions are 
presented in Section 4. 

2 Capsule Tree-LSTM Model 

Figure 1(c) shows the framework of the proposed 
model. First, the given sentence is parsed as a tree-
structured topology. The vector representation of 
this sentence is then generated by composing the 
word vectors of all non-leaf nodes in the tree 
according to their weights learned by the dynamic 
routing algorithm. Finally, the composed sentence 
vector is used for sentiment prediction. 

2.1 Tree-structured LSTM 

Given a binary parser tree, the leaf nodes are words 
and the non-leaf nodes are multi-word phrases. Let 
C(j) denotes the set of left and right child nodes of 
a non-leaf node j. Different from the sequential 
LSTM, the hidden state 1

j
th −  of the non-leaf node j 

is the composition of its left and right child nodes, 
defined as 
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where 1
left
th −   and 1
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th −   respectively denote the 

hidden states of left and right child nodes, 
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Figure 1: Illustrative examples of different LSTM models for sentiment analysis. A deeper color indicates 

more weight is assigned to the word according to its contribution to the prediction result. 
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2d d
cW u�� is a composition matrix, and bc is a bias. 

The tree-LSTM transition equations of node j are 
defined as 
⚫ Gates 
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⚫ Input transform 
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where it, ft, rt, and ct respectively denote the input 
gate, forget gate, output gate, and memory cell of 
node j, xt denotes the input word vector at the time 
step t, σ denotes the logistic sigmoid function, W 
and b respectively denote the weights and bias, and 
�  denotes element-wise multiplication. To 
integrate the sequence information in the output 
layer, the order of non-leaf hidden states to form 
the input matrix of dynamic routing layer is a key 
consideration. Here, we used the in-order traversal 
of depth-first search algorithm on the tree-
structured topology. The output matrix is 
composed of the hidden states of all non-leaf nodes, 
defined as 1 2=[ , ,..., ] hT d

TH h h h u�� , where T and 
dh respectively denote the number and 
dimensionality of the hidden states. The obtained 
hidden matrix is then fed to the aggregation layer. 

2.2 Dynamic Routing 

To compose all word vectors to generate sentence 
vectors, the tree-structured LSTM model uses the 
hidden states of all non-leaf nodes to obtain the 

weights for all nodes through the dynamic routing 
algorithm. 
    Taking the hidden states of all non-leaf nodes as 
the input vectors, the goal of dynamic routing is to 
encode the sentiment information of those vectors 
into a fixed-length sentence vector, 

 1 2[ , ,..., ]cap Js s s s=   (5) 

Inspired by the definition of capsule networks, we 
implement two layers of capsules (i.e., H=[h1, 
h2, …, hI] denotes the input capsules and s=[s1, 
s2, …, sJ] denotes the output capsules) to perform 
dynamic routing. The output capsule sj is produced 
from a non-linear “squashing” function to ensure 
| | (0,1)js �  as a probability, 
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where sj is the vector output of capsule j, vj is the 
total input, which is a weighted sum over all 
“prediction vectors” |

ˆ
j th   from the capsules in the 

layer below, 
 |

ˆ
j tj j t

t
cv h=¦   (7) 

where coupling coefficientsrctj are the probability 
distributions of capsule j which are computed using 
a softmax function so that all capsules in the layer 
above sum to 1 so that the sentiment information  

|
ˆ

j th  is obtained by multiplying the input vector ht 
by a weighted matrix Wtj, defined as, 

 |
ˆ

j t tj tWh h=   (8) 
Here, the coupling coefficients ctj are determined 
by the iterative dynamic routing process, 
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where btj is the log probabilities, initialized with 
0. The detailed iterative process of learning the 
weights between capsules in two layers for each 
non-leaf node is shown in Fig. 2. 

In Eq. (7), the capsules in the above layer try to 
learn contribution weights ctj (i.e., coupling 
coefficients) for the capsules in the below layer. 
The updated information in btj comes from the 
scalar product |

ˆ
j t jh s�  . The coupling coefficients cij 

are iteratively refined by measuring the agreement 
between the current output sj of output capsule j in 
the above layer and the prediction |

ˆ
j th   made by 

input capsule i. If the margin between the two 
vectors and sj is very large, the scalar product of 
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Figure 2: Detailed dynamic routing process 
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those vectors will be large, which will also result in 
an update on the coupling coefficient ctj. 

3 Experimental Results 

Datasets. This experiment used two datasets for 
evaluation. i) The Stanford Sentiment Treebank 
(SST) (Socher et al., 2013) is used for sentiment  
classification. It contains 6920/872/1821 sentences 
for the train/dev/test sets with binary labels 
(positive/negative) and 8544/1101/2210 sentences 
with fine-grained labels (very negative/negative/ 
neutral/positive/very positive). ii) EmoBank 
(Buechel and Hahn, 2017; Buechel and Hahn, 
2016) is used for sentiment regression to predict 
valence-arousal (VA) values (Wang et al., 2016b; 
Yu et al., 2016). It contains 10,000 sentences with 
real-valued VA ratings in the range of (1, 9), where 
the valence refers to the degree of positive and 
negative sentiment and the arousal refers to the 
degree of calm and excitement. The provided 
ratings have Reader and Writer perspectives, and 
the Reader was adopted as the ground-truth ratings 
due to its superiority reported in (Buechel and 

Hahn, 2017). We performed 5-fold cross-
validation (6:2:2) on the EmoBank dataset. 

Evaluation Metrics. For SST, the evaluation 
metric is accuracy for both binary and fine-grained 
classification. For EmoBank, we used the Pearson 
correlation coefficient (e) and mean absolute error 
(MAE). A higher e or a lower MAE value indicates 
better prediction performance. 

Implementation Details. Several deep neural 
networks were implemented for comparison, 
including CNN, GRU, LSTM, and tree-LSTM. For 
the sequential models (GRU and LSTM), we 
additionally implemented an enhanced version 
using a bi-directional strategy and 2-layer stacked 
architecture. To investigate the performance of 
self-attention, we also implement a self-attention 
layer by taking as input the hidden states of all non-
leaf nodes, to form an attention Tree-LSTM model 
(Kokkinos and Potamianos, 2017). For word 
vectors, we used GloVe pre-trained on the 840B 
Common Crawl corpus (Pennington et al., 2014). 
The respective dimensionality values of the word 
vectors and hidden states were 300 and 120. For 
classification and regression tasks, srftmax and 
linaaer dacrdae (Wang et al., 2016a) activation 
function are respectively applied as the output layer. 

Comparative Results. Tables 1 and 2 
respectively show the comparative results of 
different methods for SST and EmoBank. Both 
the enhanced bi-directional and 2-layer 
GRU/LSTM outperformed the standard GRU, 
LSTM, CNN, and the Tree-LSTM with structural 
information achieved better performance than all 
of them for both classification and regression 
tasks. Once the dynamic routing algorithm was 
introduced, the proposed Capsule Tree-LSTM 
further improved the performance of Tree-LSTM 

EmoBank 
(Regression) 

Valence Arousal 
MAE r MAE r 

CNN 0.581 0.521 0.560 0.519 
GRU 0.523 0.589 0.527 0.532 

LSTM 0.518 0.592 0.528 0.534 
Bi-GRU 0.514 0.591 0.497 0.543 

Bi-LSTM 0.506 0.610 0.498 0.578 
2-Layer Bi-GRU 0.505 0.612 0.485 0.573 

2-Layer Bi-LSTM 0.498 0.615 0.475 0.588 
Tree-LSTM 0.483 0.625 0.468 0.602 

Attention GRU 0.492 0.622 0.477 0.585 
Attention LSTM 0.495 0.620 0.472 0.589 

Attention Tree-LSTM 0.475 0.629 0.465 0.596 
Capsule Tree-LSTM 0.462 0.639 0.454 0.622 

Table 2. Results of different methods on EmoBank. 

SST (Classification) Binary Fine-grained 
CNN 87.2 48.0 
GRU 87.2 48.2 

LSTM 84.9 46.4 
Bi-GRU 87.4 48.5 

Bi-LSTM 87.5 49.1 
2-Layer Bi-GRU 87.1 48.7 

2-Layer Bi-LSTM 87.2 48.5 
Tree-LSTM 87.5 49.7 

Attention GRU 87.8 49.5 
Attention LSTM 87.6 49.2 

Attention Tree-LSTM 88.2 49.8 
Capsule Tree-LSTM 90.2 51.6 
Table 1: Results of different methods on SST. 

 
 

 
Figure 3: Effect of dynamic routing algorithm. 
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(with attention). 
 Figure 3 shows the detailed analysis of the 

effect of dynamic routing. The test sentences were 
first divided into several groups according to their 
depths in the parse trees (e.g., the depth of the 
example sentence in Fig. 1 is three). The 
performance improvement of Capsule Tree-LSTM 
over Tree-LSTM was then calculated for each 
group. The results show that the performance 
improvements increased with the increase of the 
depth. The reason is that the Tree-LSTM may 
suffer from a more serious bias problem for 
sentences with a deeper tree structure because the 
useful nodes in the deeper levels tend to be ignored. 
Conversely, the Capsule Tree-LSTM can assign a 
higher weight to the nodes that contribute more to 
the prediction even though they lie in the leaf node 
at the bottom of the tree. 

4 Conclusion 

This study presents a capsule tree-LSTM model for 
sentiment classification and regression. The 
proposed method uses dynamic routing algorithm 
to automatically learn the weights of each node to 
compose sentence representations. Experimental 
results show that the proposed method yielded 
better results than convolutional (CNN), sequential 
(LSTM and GRU), structural (tree-LSTM) and 
self-attention neural networks. Future work will 
conduct more detailed analysis to continue 
enhancing the proposed method. 
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