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Abstract

Aspect level sentiment classication aims to
identify the sentiment expressed towards an
aspect given a context sentence. Previous
neural network based methods largely ignore
the syntax structure in one sentence. In this
paper, we propose a novel target-dependent
graph attention network (TD-GAT) for aspect
level sentiment classification, which explicitly
utilizes the dependency relationship among
words. Using the dependency graph, it propa-
gates sentiment features directly from the syn-
tactic context of an aspect target. In our experi-
ments, we show our method outperforms mul-
tiple baselines with GloVe embeddings. We
also demonstrate that using BERT represen-
tations further substantially boosts the perfor-
mance.

1 Introduction

Aspect level sentiment classification aims to iden-
tify the sentiment polarity (eg. positive, negative,
neutral) of an aspect target in its context sentence.
Compared to sentence-level sentiment classifica-
tion, which tries to detect the overall sentiment in
a sentence, it is a more fine-grained task. Aspect
level sentiment classification can distinguish sen-
timent polarity for multiple aspects in a sentence
with various sentiment polarity, while sentence-
level sentiment classification often fails in these
conditions (Jiang et al., 2011). For example, in a
sentence “great food but the service was dreadful”,
the sentiment polarity for aspects “food” and “ser-
vice” are positive and negative respectively. In this
case, however, it is hard to determine the overall
sentiment since the sentence is mixed with posi-
tive and negative expressions.

Typically, researchers use machine learning al-
gorithms to classify the sentiment of given as-
pects in sentences. Some early work manually
designs features, eg. sentiment lexicons and lin-

guistic features, to train classifiers for aspect level
sentiment classification (Jiang et al., 2011; Wag-
ner et al., 2014). Later, various neural network-
based methods became popular for this task (Tang
et al., 2016b; Wang et al., 2016), as they do not re-
quire manual feature engineering. Most of them
are based on long short-term memory (LSTM)
neural networks (Tang et al., 2016a; Huang et al.,
2018) and few of them use convolutional neural
networks (CNN) (Huang and Carley, 2018; Xue
and Li, 2018).

Most of these neural network based methods
treat a sentence as a word sequence and embed
aspect information into the sentence representa-
tion via various methods, eg. attention (Wang
et al., 2016) and gate (Huang and Carley, 2018).
These methods largely ignore the syntactic struc-
ture of the sentence, which would be beneficial
to identify sentiment features directly related to
the aspect target. When an aspect term is sepa-
rated away from its sentiment phrase, it is hard to
find the associated sentiment words in a sequence.
For example, in a sentence “The food, though
served with bad service, is actually great”, the
word “great” is much closer to the aspect “food” in
the dependency graph than in the word sequence.
Using the dependency relationship is also helpful
to resolve potential ambiguity in a word sequence.
In a simple sentence “Good food bad service”,
“good” and “bad” can be used interchangeably.
Using an attention-based method, it is hard to dis-
tinguish which word is associated with “food” or
“service” among “good” and “bad”. However, a
human reader with good grammar knowledge can
easily recognize that “good” is an adjectival modi-
fier for “food” while “bad” is the modifier for “ser-
vice”.

In this paper, we propose a novel neural network
framework named target-dependent graph atten-
tion network (TD-GAT), which leverages the syn-
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tax structure of a sentence for aspect level senti-
ment classification. Unlike these previous meth-
ods, our approach represents a sentence as a de-
pendency graph instead of a word sequence. In
the dependency graph, the aspect target and re-
lated words will be connected directly. We employ
a multi-layer graph attention network to propagate
sentiment features from important syntax neigh-
bourhood words to the aspect target. We fur-
ther incorporate an LSTM unit in TD-GAT to ex-
plicitly capture aspect related information across
layers during recursive neighbourhood expansion.
Though some work tries to incorporate syntax
knowledge using recursive neural networks (Dong
et al., 2014), it has to convert the original depen-
dency tree into a binary tree, which may move
syntax related words away from the aspect term.
Compared to (Dong et al., 2014), one advantage
of our approach is that it keeps the original syntax
order unchanged.

We apply the proposed method to laptop and
restaurant datasets from SemEval 2014 (Pontiki
et al., 2014). Our experiments show that our ap-
proach outperforms multiple baselines with GloVe
embeddings (Pennington et al., 2014). We fur-
ther demonstrate that using BERT representations
(Devlin et al., 2018) boosts the performance a
lot. In our analysis, we show that our model is
lightweight in terms of model size. It achieves bet-
ter performance and requires fewer computational
resources and less running time than fine-tuning
the original BERT model.

2 Related Work

Aspect level sentiment classification is a branch of
sentiment analysis (Pang et al., 2008). The goal of
this task is to identify the sentiment polarity of an
aspect target within a given context sentence.

Some early work first converts an extensive set
of features, eg. sentiment lexicons and parse con-
text, into feature vectors, then train a classifier like
support vector machine (SVM) based on these fea-
ture vectors. Wagner et al. (2014) combine senti-
ment lexicons, distance to the aspect target, and
dependency path distance to train an SVM classi-
fier. Kiritchenko et al. (2014) also propose a sim-
ilar method and they show that adding parse con-
text features could improve the prediction accu-
racy by more than one percent.

Later, many neural network based methods are
introduced to approach this aspect level sentiment

classification task. A majority of the work uses
LSTM neural networks to model the word se-
quence in a sentence. Tang et al. (2016a) use
two LSTMs to model the left and right contexts
of an aspect target, then they take two final hidden
states as classification features. Wang et al. (2016)
introduce the attention mechanism into this task
(Bahdanau et al., 2014). They use the aspect term
embedding to generate an attention vector to se-
lect important aspect-related words in a sentence.
Following this work, Huang et al. (2018) use two
LSTM networks to model sentences and aspects in
a joint way and explicitly capture the interaction
between aspects and context sentences. From the
sentence aspect correlation matrix, they find im-
portant words in aspects as well as in sentences. Li
et al. (2018) further improve these attention-based
methods by incorporating position information.

Except for these LSTM-based methods, there
are some other neural methods existing in the lit-
erature. Tang et al. (2016b) propose a deep mem-
ory network which consists of multiple compu-
tation layers and each layer computes an atten-
tion vector over an external memory. There are
also some attempts using convolutional neural net-
works (CNN) to approach this task (Huang and
Carley, 2018; Xue and Li, 2018). Features gen-
erated from the aspect are used to control the in-
formation flow in the CNN applied to the sentence
(Huang et al., 2018). Benefited from the rich lin-
guistic knowledge learned from massive language
modeling (Devlin et al., 2018), researchers show
great progress on this task using BERT represen-
tations (Sun et al., 2019). Xu et al. (2019) utilizes
additional in-domain datasets to post-train BERT’s
weights and then fine-tune it on this task. How-
ever, such a method requires a large corpus for
post-training and the fine-tuning also takes a lot
of computation resources and time.

Unlike previous discussed neural network-
based methods, our approach explicitly utilizes the
syntax structure among one sentence and these
sentiment features are propagated towards the as-
pect target on the dependency graph instead of on
the original word sequence. Some early work also
tries to leverage the syntax structure (Dong et al.,
2014; Nguyen and Shirai, 2015). They have to
convert the original dependency tree into a binary
tree first and place the aspect target at the root
node. As a result, sentiment features can be prop-
agated recursively from the leaf nodes to the root
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node. However, such conversion may move mod-
ifying sentiment words farther away from the as-
pect target, while our approach keeps the original
syntax order unchanged.

3 Method

3.1 Text Representation
Given a sentence s = [w1, w2, ..., wi, .., wn] with
length n and an aspect target wi, we first map
each word into a low-dimensional word embed-
ding vector. For each word wi, we get one vector
xi 2 R

d where d is the dimension of the word
embedding space.

Figure 1: The dependency graph for “delivery was
early too”. Features can be propagated from neighbour
nodes to the aspect node “delivery”.

We transform the sentence into a dependency
graph using an off-the-shelf dependency parser
(Chen and Manning, 2014). Each node represents
a word and is associated with an embedding vector
as its local feature vector. An undirected edge be-
tween two words means these two words are syn-
tactically related. In Figure 1, we show an exam-
ple of the dependency graph for a sentence “deliv-
ery was early too”. For the target “delivery”, we
can propagate features from its 2-hop neighbour-
hood to 1-hop neighbourhood and then to itself.

For an aspect target with more than one word,
we first replace the whole target word sequence
with a special symbol “ target ”, then pass the
modified sentence into the dependency parser. As
a result, there is a meta-node representing the tar-
get sequence in the dependency graph and its local
feature vector is the average of embedding vectors
of words in the target.

3.2 Graph Attention Network
A graph attention network (GAT) (Veličković
et al., 2017) is a variant of graph neural network
(Scarselli et al., 2009) and is a key element in our
method. It propagates features from an aspect’s
syntax context to the aspect node. Given a depen-

dency graph with N nodes, where each node is
associated with a local word embedding vector x,
one GAT layer compute node representations by
aggregating neighbourhood’s hidden states. With
an L-layer GAT network, features from L hops
away can be propagated to the aspect target node.

Specifically, given a node i with a hidden state
h
i
l at layer l and the node’s neighbours n[i] as well

as their hidden states, a GAT updates the node’s
hidden state at layer l + 1 using multi-head atten-
tions (Vaswani et al., 2017). The update process is
as follows

h
i
l+1 =

Kn

k=1

�(
X

j2n[i]

↵
ij
lkWlkh

j
l ) (1)

↵
ij
lk =

exp(f(aTlk[Wlkh
i
l||Wlkh

j
l ]))P

u2n[i] exp(f(a
T
lk[Wlkh

i
l||Wlkh

u
l ]))

(2)

where
f

represents vector concatenation, ↵ij
lk is

the attention coefficient of node i to its neighbour
j in attention head k at layer l. Wlk 2 R

D
K⇥D

is a linear transformation matrix for input states.
D is the dimension of hidden states. � denotes a
sigmoid function. f(·) is a LeakyReLU non-linear
function (Maas et al., 2013). alk 2 R

2D
K is an

attention context vector learned during training.
For simplicity, we can write such feature prop-

agation process as

Hl+1 = GAT (Hl, A;⇥l) (3)

where Hl 2 R
N⇥D is the stacked states for all

nodes at layer l, A 2 R
N⇥N is the graph adjacent

matrix. ⇥l is the parameter set of the GAT at layer
l.

3.3 Target-Dependent Graph Attention
Network

To utilize the target information in such a GAT net-
work explicitly, we further use an LSTM to model
the dependency for the aspect target across layers,
which is also helpful for overcoming noisy infor-
mation in a graph (Huang and Carley, 2019). The
basic idea is that at layer 0 the hidden state for an
aspect target node ht0 is only dependent on the tar-
get’s local features and at each layer l information
related with the target from l-hop neighbourhood
is added into the hidden state by the LSTM unit.
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Given the previous hidden state h
t
l�1 and cell

state c
t
l�1 for any target node t, we first get a tem-

porary hidden state ĥ
t
l by aggregating its neigh-

bour information using equation 1. Then we take
this temporary hidden state as a new observation
for an LSTM unit and update the hidden state at
layer l as follows:

il = �(Wiĥ
t
l + Uihl�1 + bi) (4)

fl = �(Wf ĥ
t
l + Ufhl�1 + bf ) (5)

ol = �(Woĥ
t
l + Uohl�1 + bo) (6)

ĉl = tanh(Wcĥ
t
l + Uchl�1 + bc) (7)

cl = fl � cl�1 + il � ĉl (8)
hl = ol � tanh(cl) (9)

where �(·) and tanh(·) are the sigmoid func-
tion and hyperbolic tangent function respectively.
Wi, Ui,Wf , Uf ,Wo, Uo,Wc, Uc are parameter
matrices and bi, bf , bo, bc are bias vectors to be
learned during training. Symbol � represents
element-wise multiplication. it, ft and ot are input
gate, forget gate and output gate, which control the
information flow.

In summary, the feed-forward process of our
target-dependent graph neural network can be
written as

Hl+1, Cl+1 = LSTM(GAT (Hl, A;⇥l), (Hl, Cl))

H0, C0 = LSTM(XWp + [bp]N , (0, 0))

where Cl is the stacked cell states of the LSTM
at layer l. The initial hidden state and cell state
of the LSTM are set as 0. Wp 2 R

d⇥D is the
projection matrix that transforms stacked embed-
ding vectors X into the dimension of hidden states
and [bp]N represents stacking the bias vector bp

N times and forms a bias matrix with dimension
R

N⇥D. Similarly, we can also replace the LSTM
unit with a GRU unit to model the layer-wise de-
pendency for the target.

3.4 Final Classification
With L layers of our TD-GAT networks, we get a
final representation for our aspect target node. We
just retrieve the corresponding hidden state h

t
L for

the aspect target node from all the node represen-
tations HL.

We map the hidden state h
t
L into the classifica-

tion space by a linear transformation. Afterwards,

the probability of a sentiment class c is computed
by a softmax function:

P (y = c) =
exp(Wh

t
L + b)cP

i2C exp(Wh
t
L + b)i

(10)

where W, b are the weight matrix and bias for the
linear transformation, C is the set of sentiment
classes.

The final predicted sentiment polarity of an as-
pect target is the label with the highest probability.
We minimize the cross-entropy loss with L2 regu-
larization to train our model

loss = �
X

c2C
I(y = c) · log(P (y = c)) + �||⇥||2

where I(·) is an indicator function. � is the L2

regularization parameter and ⇥ is the set of all the
parameters in our model.

4 Experiments

4.1 Datasets
We adopt two widely used datasets from SemEval
2014 Task 4 (Pontiki et al., 2014) to validate
the effectiveness of our method. These are two
domain-specific datasets collected from laptop and
restaurant reviews. Each data point is a pair of
a sentence and an aspect term. Experienced an-
notators tagged each pair with sentiment polarity.
Following recent work (Tay et al., 2018; Huang
and Carley, 2018), we first take 500 training in-
stances as development set1 to tune our model. We
then combine the development dataset and training
dataset to train our final model. Statistics of these
two datasets are given in Table 1.

Dataset Positive Neutral Negative
Laptop-Train 767 373 673
Laptop-Dev 220 87 193
Laptop-Test 341 169 128
Restaurant-Train 1886 531 685
Restaurant-Dev 278 102 120
Restaurant-Test 728 196 196

Table 1: Statistics of the datasets.

4.2 Implementation Details
We use the Stanford neural parser (Chen and
Manning, 2014) to get dependency graphs. We

1The splits can be found at
https://github.com/vanzytay/ABSA DevSplits.
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try two embedding methods in this paper. One
is 300-dimensional GloVe embeddings (Penning-
ton et al., 2014), where we just retrieve the cor-
responding embedding vector for each token in
graphs. Another is BERT representations (Devlin
et al., 2018), where we use the large uncased En-
glish model with dimension 1024 implemented in
PyTorch 2. The input of the BERT model is a text
pair formatted as “[CLS]” + sentence + “[SEP]”
+ aspect + “[SEP]”. The representations of the
sentence are used for the downstream aspect-level
sentiment classification task. Because the tokeniz-
ers used in the parser and BERT are different, we
get the BERT representations for tokens in depen-
dency graphs by averaging the corresponding rep-
resentations of sub-word units (“wordpiece”) from
BERT. For example, the representation of the to-
ken “overload” is the average of representations
of two sub-words “over” and “##load”. Once the
word representations are initialized, they are fixed
during training.

We set the dimension of hidden states as 300 in
our experiments. For the BERT representations,
we first map word representations into 300 dimen-
sional vectors by a linear projection layer. We use
6 attention heads in our model. We train our model
with batch size of 32. We apply l2 regularization
with term � 10�4 and dropout (Srivastava et al.,
2014) on the input word embedding with rate 0.7.
We first use Adam (Kingma and Ba, 2014) opti-
mizer with learning rate 10�3 to train our model,
then switch to stochastic gradient descent to fine-
tune and stabilize our model.

We implemented our model using PyTorch Ge-
ometric (Fey and Lenssen, 2019) on a Linux ma-
chine with Titan XP GPUs.

4.3 Baseline Comparisons

To validate the effectiveness of our method, we
compare it to following baseline methods:

Feature-based SVM utilizes n-gram features,
parse features and lexicon features for aspect-level
sentiment classification (Kiritchenko et al., 2014)

TD-LSTM is a direct competitor against our
method. It uses two LSTM networks to model
the preceding and following contexts surrounding
the aspect term, while we use GAT to model the
syntax context around an aspect. The last hidden
states of these two LSTM networks are concate-

2https://github.com/huggingface/pytorch-pretrained-
BERT

nated for predicting the sentiment polarity (Tang
et al., 2016a).

AT-LSTM first models the sentence via a
LSTM model. Then it combines the hidden states
from the LSTM with the aspect term embedding
to generate the attention vector. The final sentence
representation is the weighted sum of the hidden
states (Wang et al., 2016).

MemNet applies attention multiple times on the
word embeddings, and the output of last atten-
tion is fed to softmax for prediction (Tang et al.,
2016b).

IAN uses two LSTM networks to model the
sentence and aspect term respectively. It uses the
hidden states from the sentence to generate an at-
tention vector for the target, and vice versa. Based
on these two attention vectors, it outputs a sen-
tence representation and a target representation for
classification (Ma et al., 2017).

PG-CNN is a CNN based model where aspect
features are used as gates to control the feature ex-
traction on sentences (Huang and Carley, 2018).

AOA-LSTM introduces an attention-over-
attention (AOA) based network to model aspects
and sentences in a joint way and explicitly capture
the interaction between aspects and context sen-
tences (Huang et al., 2018).

BERT-AVG uses the average of the sentence
representations to train a linear classifier.

BERT-CLS is a model where we directly use
the representation of “[CLS]” as a classification
feature to fine-tune the BERT model for paired
sentence classification. We fine-tune it for 5
epochs using Adam optimizer with batch size 8
and learning rate 10�5.

The comparison results are shown in Table 2.
With GloVe embeddings, our approach TD-GAT-
GloVe (k), where k is the number of layers, outper-
forms all these previous methods. Among these
baselines, Feature-based SVM achieves strong
performance on this task, which indicates the im-
portance of feature engineering and syntax knowl-
edge.

As one direct competitor, TD-LSTM propagates
sentiment features from the beginning and the end
of the sentence to the aspect target, while our
model propagates features from syntax dependent
words to the target on a dependency graph. Com-
pared to TD-LSTM, our model shows superior
performance, which directly proves the necessity
of incorporating syntax information.
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Laptop Restaurant
Feature+SVM 70.5 80.2
TD-LSTM 68.1 75.6
AT-LSTM 68.9 76.2
MemNet 72.4 80.3
IAN 72.1 78.6
PG-CNN 69.1 78.9
AOA-LSTM 72.6 79.7
TD-GAT-GloVe (3) 73.7 81.1
TD-GAT-GloVe (4) 74.0 80.6
TD-GAT-GloVe (5) 73.4 81.2
BERT-AVG 76.5 78.7
BERT-CLS 77.1 81.2
TD-GAT-BERT (3) 79.3 82.9
TD-GAT-BERT (4) 79.8 83.0
TD-GAT-BERT (5) 80.1 82.8

Table 2: Comparison results of different methods on
laptop and restaurant datasets. Numbers in parentheses
indicate number of layers in our model.

Using BERT representations further boosts the
performance of our model. BERT-AVG, which
uses BERT representations without fine-tuning,
achieves surprisingly excellent performance on
this task. After fine-tuning, the performance of
BERT-CLS becomes even better. However, we ob-
serve that such fine-tuning is quite unstable. The
model cannot converge in some trials.

Even though the original BERT model already
provides strong prediction power, our model con-
sistently improves over BERT-AVG and BERT-
CLS, which indicates that our model can better
utilize these semantic representations. The accu-
racy of our model reaches about 80% and 83% on
the laptop and restaurant datasets respectively.

4.4 Effects of Target Information

In this section, we provide an ablation study to
show the effects of explicitly capturing target in-
formation. In the ablated model, we remove the
LSTM unit in our TD-GAT model, so that it can-
not utilize the aspect target information explicitly.
We denote this ablated model as GAT.

As shown in Table 3, explicitly capturing as-
pect target information consistently improves the
performance of the TD-GAT-GloVe over the GAT-
GloVe model. On average, the accuracy of TD-
GAT-GloVe increased by 1.2 percentage points.
Capturing aspect-related information explicitly
across layer is also useful for the BERT-based

model as well. Even though the target informa-
tion has been embedded in the BERT representa-
tion because of the contextual language modeling,
TD-GAT-BERT still outperforms the GAT-BERT
model. On average, the explicit target information
contributes 0.95 percentage points to the final per-
formance of the TD-GAT-BERT.

Dataset Laptop Restaurant
layer 3 4 5 3 4 5
GAT-GloVe 73.0 72.1 72.4 79.6 80.0 79.7
TD-GAT-GloVe 73.7 74.0 73.4 81.1 80.6 81.2
GAT-BERT 78.1 78.5 78.5 82.6 82.2 82.3
TD-GAT-BERT 79.3 79.8 80.1 82.9 83.0 82.8

Table 3: An ablation study shows the effect of explicit
target information.

4.5 Effects of Model Depth

Figure 2: The impact of model depth (number of lay-
ers).

We explore the impact of model depth (num-
ber of layers) in this section. For our TD-GAT
model, we vary its model depth ranging from 1 to
6. As shown in Figure 2, a one-layer TD-GAT
model with GloVe embeddings does not work
well, which implies target-related sentiment words
are usually 2-hops away from the aspect target.
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Increasing the model depth to 3 would greatly
improve the performance of the TD-GAT-GloVe
model.

Unlike the TD-GAT-GloVe model, our model
with BERT representations are more robust to the
model depth. Even a one-layer TD-GAT-BERT
model still achieves satisfactory results on both
datasets. One possible reason is that BERT repre-
sentations already incorporate context words into
these semantic representations. Hence nodes at
one-hop away may consist of some global infor-
mation. However, increasing the model depth
still improve the performance in this case and
our model reaches its optimal performance when
model depth is larger than 3.

4.6 Model Size

We compare the model size of our TD-GAT model
to various baseline methods as well as the BERT
model. For these baseline methods, we use an
open source PyTorch implementation 3 to measure
their model sizes.

Models Model size (⇥106)
TD-LSTM 1.45
MemNet (3) 0.36
IAN 2.17
AOA-LSTM 2.89
TD-GAT-GloVe (3) 1.00
TD-GAT-GloVe (4) 1.09
TD-GAT-GloVe (5) 1.18
BERT-CLS 335.14
TD-GAT-BERT (3) 1.30
TD-GAT-BERT (4) 1.39
TD-GAT-BERT (5) 1.49

Table 4: The model size (number of parameters) of our
model as well as baselines.

The sizes of all these models are given in Ta-
ble 4. Using the same dimension of hidden states,
our TD-GAT-GloVe has a lower model size com-
pared to these LSTM-based methods. MemNet is
the model ranks the first in terms of the model size.
The size of TD-GAT-BERT increases by 0.3⇥106

because of the linear projection layer applied on
the input word representations. When we switch
from GloVe embeddings to BERT representations,
the training time for a three-layer TD-GAT model
on the restaurant dataset only increases from 1.12

3https://github.com/songyouwei/ABSA-PyTorch

seconds/epoch to 1.15 seconds/epoch. On the con-
trary, fine-tuning the BERT model takes about
226.50 seconds for each training epoch. Training
our TD-GAT-BERT model requires much fewer
computation resources and less time compared to
fine-tuning the original BERT model.

5 Conclusion

In this paper, we propose a novel target-dependent
graph attention neural network for aspect level
sentiment classification. It leverages the syntac-
tic dependency structure of a sentence and uses
the syntax context of an aspect target for clas-
sification. Compared to those methods applied
on word sequences, our approach places modi-
fying sentiment words closer to the aspect target
and can resolve potential syntactic ambiguity. In
our experiments, we demonstrate the effectiveness
of our method on laptop and restaurant datasets
from SemEval 2014. Using GloVe embeddings,
our approach TD-GAT-GloVe outperforms various
baseline models. After switching to BERT repre-
sentations, we show that TD-GAT-BERT achieves
much better performance. It is lightweight and
requires fewer computational resources and less
training time than fine-tuning the original BERT
model.

To the best of our knowledge, this paper is
the first attempt directly using the original depen-
dency graph without converting its structure for
aspect level sentiment classification. Many po-
tential improvements could be made in this direc-
tion. In this work, the local feature vector of an
aspect node is the average of embedding vectors
of words in the aspect and each word in the aspect
is equally important. Future work could consider
using an attention mechanism to focus on impor-
tant words in the aspect. Since this work only uses
the dependency graph and ignores various types of
relations in the graph, we plan to incorporate de-
pendency relation types into our model and take
part-of-speech tagging into consideration as well
in the future. We would also like to combine such
a graph-based model with a sequence-based model
to avoid potential noise from dependency parsing
errors.
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